If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63=2x^2+11x
We move all terms to the left:
63-(2x^2+11x)=0
We get rid of parentheses
-2x^2-11x+63=0
a = -2; b = -11; c = +63;
Δ = b2-4ac
Δ = -112-4·(-2)·63
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-25}{2*-2}=\frac{-14}{-4} =3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+25}{2*-2}=\frac{36}{-4} =-9 $
| 6/n=30/50 | | 1/2(x+3)=22 | | -x^2+11x+2=0 | | 5x^2+50x-2000=0 | | 56s+12=80s+8 | | -2x+10=7x+1 | | -(5x-3)-(2x-4)+9=-8(x-6)-(5x+3)+6 | | (x+3)^2+(x-1)^2=10 | | (5x^2+5)^2=2025 | | 6/17xX=6/119 | | 1/4x+2=13 | | -(3x-3)-(4x-5)+5=-7(x-1)-(4x+5)+3 | | -6x-6x=0 | | -4x+9=2×-12×+5 | | (-3r+12)(8)r=-1/3 | | 2(1+4x)=7(x+1) | | -(8-t)=(3t-7) | | -(9-t)=(2t-5) | | (x+2)^2+(5x-3)^2=(4x+1)2 | | −15=−4x+5 | | 38=s/3 | | 7(y-1)=3(y-2) | | n÷15=2 | | 10x^2-34x-6=0 | | 7x=3(7)÷2(7) | | 6x+7-4x-9=8x-6x-5 | | X-(.80x)=140 | | 5v+8=-2 | | v/18=19 | | -5/3v=25 | | 28s+30s=36s+20 | | 14=7x+5x^2 |